S.6. chemistry revision test about s.4. work

- 1.a. Define the term isotope.
- b. A sample of boron with relative atomic mass of 10.8 gives a mass spectrum with two peaks at m/z = 10 and one at m/z = 11.
- i. Calculate the heights of the peaks.
- ii. Calculate the percentage abundance at each peak and sketch its mass spectrum.
- 2. The diagram below shows part of the series in the hydrogen spectrum.

- i. Identify spectral series X and Y.
- ii. Which of the two series gives rise to visible spectrum?
- iii. What is the colour of the longest and shortest line in series Y
- iv. Find the longest and shortest wavelength in the Y series. (R =109667cm⁻¹)
- 3. The table below shows the first three values of ionisation energy for elements A and B in kJmol⁻¹

Element	1 st IE	2 nd IE	3 rd IE
А	780	1500	7730
В	500	4560	6900

- (a) Determine the group to which they belong and explain your answer.
- (b) Write the equation of reaction between A and chlorine gas.
- (C) Show the possible formula for the oxide of B.
- 4. Explain the following
- a. P has a higher first ionization energy than S.
- b. Phosphine(PH₃) has a lower boiling point than ammonia
- c. Solubility of hydroxides of group ii elements all increase down the group.
- d. A solution of AlCl₃ is acidic.
- 5. Complete the following table.

molecule	Bond angle	Name of shape	Structure of shape	hybridization
BH ₃				
PCl ₅				

- 6. Using a reagent carry out a chemical test to differentiate between the following pairs of ions. Include equations and observations for reaction.
- a. SO_3^{2-} and SO_4^{2-}
- b. Ba²⁺ and Ca²⁺
- 7. Li is in group I and Mg is in group II but the two elements show similar chemical properties.
- a. State the name of the relationship.
- b. State 2 properties in which these two elements show similar properties.
- c. Give two other pairs of elements that show that same relationship.
- 8. a. Using a diagram and equations that occur at the anode and cathode explain the process of purification of Al
- b. A solution of aluminium was contaminated with iron iii ions. Outline how you would remove iron (iii) ions to leave a solution of aluminium free from this impurity. Describe the expected observation in case.
- c. Give one application of Al
- 9 a. State the common oxidation states of group iv elements.
- b. State how the stability of the oxidation states varies down the group.
- c.i. Define inert pair effect.
- ii. Using the tetrachlorides of lead explain the inert pair effect.
- d. Explain why carbon tetrachloride is non polar yet its bonds are polar.
- 10. Write balanced equations of reaction between
- a. conc. HNO₃ and C
- b. conc HNO₃ and Cu
- c. calcium phosphate and HNO₃
- 11. Using equations explain the contact process(manufacture of sulphuric acid)
- 12. a. state and explain how the oxidizing power of group seven element change down the group.
- b. Write equations to show chlorine reacts with
- i. water. ii. KBr iii. FeCl₃ iv. Cold NaOH
- c. why is the reaction in b(i) called a disproportionation reaction
- 13. Complete the table below.

Element	Formula of oxide	Type of bonding
Al		
Si		
Р		

- b. Write the equations of reaction between the oxides of Si and P with water.
- 14. Define giving equations give examples.
- a. Heat of formation
- b. Standard heat of combustion
- c. Lattice energy
- 14. a. Write the equation for the Haber process.

- b. Explain what will happen to the equilibrium position if
- i. pressure is increased.
- ii. a catalyst is added.
- iii. More H_2 is added
- c. using example show how NH₃ acts a
- i. lewis base
- ii. Bronsted and lowry base.
- 15.a. Explain why potassium permanganate
- i. is not acidified by HCl ii. does not need an indicator during titration
- b. i. Complete balancing the following equations of reaction
- $BiO_{3}^{-} + Mn^{2+} \rightarrow Bi^{3+} + MnO_{4}^{-}$
- ii. The above equation is a chemical test to test the presence of Mn^{2^+} State what is observed