
UNIT 1: WAVES AND PARTICLE NATURE OF LIGHT 

1.0.  Introduction 

In physics, a wave is an oscillation accompanied by a transfer of energy that travels through a 

medium (space or mass).Wave motion transfers energy from one point to another, which displace 

particles of transmission medium that is, with little or no associated mass transport. There are two 

main types of waves: Mechanical waves propagate through a medium, and the substance of this 

medium is deformed. The second main type, electromagnetic waves, do not require a medium.  

1.1.  Planck’s quantum theory 

Quantum theory consists of facts concerning the interactions of electromagnetic radiation with matter. Two 

of these interactions are photoelectric emission and black body radiation. Both light and matter consists of 

tiny particles which have wavelike properties associated with them. Light is composed of photons and 

matter is composed of electrons, protons and neutrons. 

The quantum theory arose out of the inability of classical physics to explain the experimentally observed 

distribution of energy in the spectrum of a black body. When a black body is heated, it emits thermal 

radiations of different wavelengths or frequencies. To explain these radiations, Max Planck put forward a 

theory known as Planck’s quantum theory which is summarized in the following statements:  

1. The matter is composed of a large number of oscillating particles, having different frequencies. 

2. The radiant energy which is emitted or absorbed by the black body is not continuous but 

discontinuous in the form of small discrete packets of energy and each such packet of energy is 

called a “quantum”. In the case of light, the quantum of energy is called a “photon”. 

3. The energy of each quantum is directly proportional to the frequency of the radiation i.e. 

or then , where is the speed of light, is the wavelength and is the 

Planck’s constant. 

4. The oscillator emits energy, when it moves from one quantized state to the other quantized state. 

The oscillator does not emit energy as long as it remains in one energy state. The total amount of 

energy emitted or absorbed by a body will be some whole number quanta. Hence 

where is an integer. 

According to the Planck’s quantum theory, the exchange of energy between quantized states is not 

continuous but discrete. This quantized energy is in small packets of bundles.  

Max Plank supposed that “A body would thus emit one, two, three etc quanta of energy but no fractional 

amount”s.  

According to Plank, the quantum of energy for radiation of frequency is given by where 

is Plank’s constant. Its value is . For electromagnetic radiation of wavelength , the 

speed , where is its speed in vacuum and so we have . The speed of electromagnetic 

wave is given by 

 

where , are the permeability and permittivity of free space and
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and or . The energy of a 

quantum is thus inversely proportional to the wavelength of the radiation but directly proportional to the 

frequency. It is convenient to express many quantum energies in electro-volts. The quantum for red light 

has energy of about and for blue light; it is about by using the equation . 

 

1.2.  Photon theory of light and photoelectric effect 

As proposed by Einstein, light is composed of photons, very small packets of energy. A photon is an 

elementary particle, the quantum of all forms of electromagnetic radiation including light, whose rest mass 

equals zero (i.e. and has no electric charge (  

1.2.1. Properties of photons 

 A photon travels at a speed of light c in vacuum (i.e. ) 

 It has zero rest mass (it has no mass) i.e. the photon cannot exist at rest. 

 It has zero charge (it has no charge) 

 The kinetic mass of a photon is,  

 The momentum of a photon is, . 

 Photons travel in a straight line. 

 It is a carrier of electromagnetic energy. Energy of a photon depends upon frequency of the 

photon; so the energy of the photon does not change when photon travels from one medium to 

another 

1.2.2. Photoelectric effect  

 

2.0. 

Photoelectric effect is the emission of electrons from the surface of metals when light of a certain 

frequency is incident on it. In other words, it is the process of removal of electrons from the surface of 

metal when the rays of special frequency fall on the surface of metal. As a result of the flow of these 

photoelectrons, the photoelectric current is produced.
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Experimental Set-up to study Photoelectric Effect: 

                           UV light 

 

                                    

 

                                                                  

 

                                                                                      

                                                                                      

 

                                  

                             

                     

 

 

 

              : Metallic Cathode 

             : Metallic Anode 

             : Quartz Window 

 : Photoelectron 

Glass transmits only visible and infra-red lights but not UV light. Quartz transmits UV light. 

 

                
 

The electron that gets kicked out of the metal gets its energy from that photon. Some of the energy is used 

to break the electron from the metal (the work function  is the amount of energy binding the electron to 

the metal) that’s.  

There is a critical frequency for each metal, ν0, below which no electrons are emitted; this is called threshold 

frequency.  
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Now we can write an equation for the kinetic energy of the emitted electron.   where   

is the kinetic energy of electron emitted from metal,  is the energy of photon and is the energy 

needed to eject an electron from the metal; called the work function of a metal.   

The intensity of radiation is the power per unit area or   and the rate at 

which electros are emitted is 

 

where is the power.

 

The photocurrent produced by  electrons is . 

2.1.1. Applications of photoelectric effect  

There are numerous desirable applications based on photoelectric effect such as:  

1. Automatic doors: the beam of light strikes the photocell, the photoelectric effect generates enough 

ejected electrons to produce a detectable electric current. When the light beam is blocked (by a 

person), the electric current is interrupted and the doors are signalled to open. 

2. Solar panels: photocells convert sunlight into electrical energy.  

3. Automatic fire alarm 

4. Automatic burglar alarm 

5. Scanners in Television transmission 

6. Reproduction of sound in cinema film 

7. In paper industry to measure the thickness of paper 

8. To locate flaws or holes in the finished goods 

9. Automatic switching of street lights 

10. Photometry 

2.1.2. Measure of Planck’s constant 

 Planck’s constant connects the particulate photon energy  with the associated wave frequency f. 

The electron is emitted from the metal with a specific kinetic energy (i.e. a specific speed). The kinetic 

energy of the emitted electron must depend on the frequency of the light and this changed the kinetic energy 

of the emitted electron. 

When the kinetic energy of emitted electron is plotted against the frequency, the slope of the line represents 

Planck’s constant . We call a reduced Planck’s constant the symbol . 
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The determination of this constant requires the following apparatus:  

 power supply, 

 a digital milliameter,  

 a digital voltmeter,  

 a  resistor and  

 Different known wavelength LEDs (Light Emitting Diodes). 

                                  

A LED (Light Emitting Diode) is a tow terminal semiconductor light source. The light energy emitted by 

LED is given as . If is the forward voltage applied across the LED when it begins to emit 

light, the energy given to electrons crossing the junction is . Equating both equations, we get 

and . The voltage can be measured for LEDs with different values of 

(wavelengths of lights)  . 

Now from the equation , we see that the slope of the graph of on the vertical axis and on the 

horizontal axis is  . 

 

To determine Planck’s constant , we take the slope from our graph and calculate . Using 

known values . Alternatively, we can write equation as , calculate 

for each LED, and take the average of our results. 
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1.3. Wave theory of monochromatic light  

 

1.3.1. Definitions 

A wave is any disturbance that results into the transfer of energy from one point to another point. 

Primary source: the geometrical centre or axis of the actual source of light which is either a point or a 

line is called the primary source. 

Wavelets: all points lying on small curved surfaces that receive light at the same time from the source 

(primary or secondary) are called wavelets. 

Secondary source: any point on a wavelet, acts as the source of light for further propagation of light. It is 

called a secondary source. 

Wave front: This is the envelope of all wavelets in the same phase receives light from sources in the same 

phase at the same time.      

Wave normal: This is the normal at any point drawn outward on a wave front. Further propagation of 

light occurs along the wave normal. In isotropic media, the wave normal coincides with the ‘ray of light’. 

 

1.3.2. Huygens ‘principle of monochromatic light 

Huygens published a theory in 1690, having compared the behaviour of light not with that of water waves 

but with that of sound. According to Huygens’ Principle:   

 Light travels in the form of longitudinal waves which travel with uniform velocity in homogeneous 

medium 

 Different colours are due to the different wavelengths of light waves. 

 We get the sensation of light when these waves enter our eyes.  

 In order to explain the propagation of waves of light through vacuum. Huygens suggested the 

existence of a hypothetical medium called aluminiferous ether, which is present in vacuum as well 

as in all material objects. Since ether couldn’t be detected, it was attributed properties like:  

 It is continuous and is made up of elastic particles 

 It has zero density 

 It is perfectly transparent 

 It is present everywhere. 

The Huygens ‘principle of the wave theory of light states that: “Every point on the wave front may be 

considered as a source of secondary spherical wavelets which spread out in the forward direction at the 

speed of light. The new wave front is the tangential surface to all of these secondary wavelets”. 

In the wave theory assuming monochromatic light, the two important properties of light wave are its 

intensity and frequency (or wavelength). When these two quantities are varied, the wave theory makes the 

following predictions: 

1. If the light intensity is increased, the number of electrons ejected and their maximum kinetic energy 

should be increased because the higher intensity means greater electric field amplitude, and the 

greater electric field should eject the electrons with higher speed. 

2. The frequency of the light should not affect the kinetic energy of the ejected electrons. Only the 

frequency of incident radiation affect the maximum kinetic energy. there are however, at least two 

problems with this idea and these led Newton and others to reject it:  

 The secondary waves are propagated in the forward direction only and  

 They are assumed to destroy each other except when they form the new wave front. 

 



                   1.3.3. Limitations of Huygens ’wave theory of light 

It could not explain the rectilinear propagation of light 

It could not explain the phenomena of polarization of light such as Compton and photoelectric effect 

Michelson and Morley experiment concluded that there is no ether drag when the earth moves through it. 

This proves ether doesn’t exist. All other attempts/experiments to detect aluminiferous ether failed, which 

prove that it does not exist. 

 

1.4. Representation and Properties of light wave 

                       Representation of wave 

Wave can be represented on a distance or time graphs. The graph shows how the displacement of particles 

varies along a wave. The displacement and time have coefficients and respectively. 

 
                         Characteristics of wave 

1. Wave number is the number of waves in a unit distance this is the spatial frequency of a wave 

either in cycles per unit distance or radians per unit distance. Mathematically ; it is also 

called the propagation constant of wave motion. 

2. Crest is the top, maximum height of the transverse wave. 

3. Trough is the bottom or lowest point of the transverse wave. 

4. Displacement is the distance a particle moves from its central equilibrium position. 

5. Amplitude is the maximum displacement from the central equilibrium  

6. Time period . This is the time it takes for the wave to travel a complete wavelength. 

Mathematically 𝑇 =
2𝜋

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡
 i.e.  

7. Frequency is the number of complete waves (cycles) per unit time; mathematically 𝑓 =

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡

2𝜋
 i.e. . 

8. Wavelength is a displacement equivalent to one complete wave; this is the shortest distance 

along the wave between two points that are in phase with one another i.e. the distance over which 

the wave’s shape repeats. Mathematically the wavelength is 
2𝜋

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥
   i.e. . 

Phase angle is the angle in degrees or radians that the waveform has shifted from a certain reference 

point along the horizontal zero axis. . One complete wave is or radians; so from a peak 

to the through will be a change in phase of or radians. It is denoted by 
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To calculate the phase angle, one should proceed as follows:        . 

9. Speed of wave  or wave velocity is the speed at which the wave fronts pass a stationary 

object.𝑣 =
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥
 i.e.  where or . If the time for one 

complete wave is the time period and the distance is the wavelength , then 

 𝑠𝑝𝑒𝑒𝑑 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑡𝑖𝑚𝑒
; . But as the frequency , becomes . 

10. Intensity of the wave is the power per unit area that is received by a stationary observer. The 

intensity is directly proportional to the square of the amplitude.  and . 

 

                                    PROPERTIES OF LIGHT WAVE 

  The wave has the following properties: Reflection, Refraction, Diffraction, Interference and Polarization. 

1.5. Blackbody radiation 

 

A blackbody is a theoretical object that absorbs 100% of the radiation that hits it and re-radiates energy 

which is the characteristic of this radiating system or body only. It is a hypothetical perfect absorber and 

radiator of energy with no reflecting power; therefore it reflects no radiation and appears perfectly black.  

A blackbody is a surface that 

• Completely absorbs all incident radiation 

• emits radiation at the maximum possible monochromatic intensity in all directions and at all wavelengths. 

The blackbody radiation is the emission of electromagnetic waves from the surface of an object. The 

distribution of blackbody radiation depends on the temperature of the object and is independent of the 

material.  

We would expect a black body to be the best possible emitter at any given temperature. The radiation 

emitted by it is called “black body radiation” or “full radiation” or “temperature radiation”. The energy 

in the spectrum of a black body is distributed among the various wavelengths. As in the diagram below 

 

1.5.1. Wien’s displacement law 

Wien’s law states that “the wavelength of peak emission is inversely proportional to the temperature of 

the emitting object” i.e. the hotter the object, the shorter the wavelength of maximum emission.  

i) As the temperature rises, the energy emitted in each band of wavelength increases, the body 

becomes “brighter”. 
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ii) The statement is known as Wien’s displacement law. This explains why a body appears 

successively red-hot, yellow-hot and white-hot etc. Sirius (Dog Star) looks blue not white. The 

full equation is . 

 

                    
 

1.5.2. Stephan’s law of radiation 

This states that “the total energy radiated of all wavelengths per unit area per unit time by a black 

body is directly proportional to the fourth power of the thermodynamic temperature ”. Mathematically, 

i.e. where is the Stephan’s constant. Its value is . 

 

1.5.3. Kirchhoff’s law of radiation  

It states that “for an object whose temperature is not changing, an object that absorbs radiation well at a 

particular wavelength will also emit radiation well at that wavelength”. 

 

1.6. Energy, mass and momentum of a photon 

The energy-momentum relation is the relativistic equation relating any object’s rest mass, total energy, and 

momentum: 

                       𝐸2 = (𝑝𝑐)2 + (𝑚0𝑐2)2 

The famous Einstein’s equation of energy of the photon is . In short, the equation describes how 

energy and mass are related with speed of light. To derive this equation, consider X-ray photon of mass 

hitting the surface of a metal and consider if a part of its energy is gained by a surface electron and is then 

emitted.  

The most important laws in dynamics are those that state the conservation of energy and the conservation 

of momentum. Those two laws can be applied whenever we have a closed system; that is, a system that 

does not interact with its surroundings. They assert that for such systems and any process they may undergo: 
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assume that is the energy, is the distance, is the force, is the speed of the photon, is the time and 

is the momentum, then and . 

The total energy of the photon is given by  

The distance moved by the photon is , thus  

From Newton’s second law, (force equals the rate of change of momentum);  the momentum of the 

photon is given by ; and we deduce that . 

Substituting for in the equation for energy, we get the total energy of the photon given by 

  The equation for energy can be written as from which we get 

and we deduce . 

               THE PARTICLE NATURE OF LIGHT 

                              Compton effect 

Compton in 1923,  his experiment provides additional confirmation of the quantum nature of . 

He discovered that when X-rays strike or fall on matter (metal) some of radiations are scattered and the 

scattered radiation has small frequency (longer wavelength) than the incident radiation and the change in 

wavelength depends on the angle through which the radiation is scattered. This was known as “Compton 

effect’’ or “Compton scattering”. 

The Compton Effect concerns the inelastic scattering of X-rays by electrons as illustrated below 

 

                                                     
                                              Before collision          After collision  

 

Compton Effect is the result of a high energy photon colliding with a target which releases loosely bound 

electrons from the outer shell of the atom or molecule. Some of the energy and momentum of the photon 

is transferred to the electron. The scattering radiation experiences a wavelength shift that cannot be 

explained in terms of classical wave theory, thus lending support to Einstein’s photon theory.  

The Compton shift is the change in wavelength  due to the loss of energy of the incident X-

rays. If the scattered radiation energies at an angle with respect to the incident direction and if and 

are the wavelengths of incident and scattered radiations, respectively, he found that  

Energy of a photon before collision  
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Energy of a photon after collision  

Conservation of energy    

Combining with conservation of momentum  where  is electron rest 

mass, is Planck’s constant and is the speed of light. 

 

Note that, the classical theory (wave theory) was not able to explain Compton Effect because it predicts 

that scattered wave has the same wavelength as the incident wave. But the quantum theory provides a 

beautifully clear explanation. They imagine the scattering process as collision of two particles: the incident 

photon and electron that is initially at rest. 

We can also say that the incident photon transfers a part of its energy to the free electron (target electron) 

and the scattered photon must have a lower energy. From the equation , when

,  

, . The value is called Compton wavelength of the electron 

and has a value of   and is the scattering angle of photon. This is not of course an 

actual wavelength, but really a proportionality constant for the wavelength shift. . 

 

1.7. Photon interactions  

A photon can be considered to have a wavelength and frequency (like a wave), as well as momentum and 

energy (like a particle). 

Photons are electromagnetic radiations with zero mass, zero charge and a velocity that is always equal to 

the speed of light. A photon has no 'charge' and has a much lower chance of interacting with matter than 

charged particles such as electrons and protons. Photons travel some considerable distance before 

undergoing a more “catastrophic” interaction leading to partial or total transfer of the photon energy 

to electron energy. These electrons will ultimately deposit their energy in the medium. Photons are far 

more penetrating than charged particles of similar energy.  

       

1.7.1. Types of photon interaction 

 

There are six ways in which photons may interact with matter and some photon interactions are important 

in therapy and/or diagnostic radiology. These may cause the photon to attenuate (lose some of its energy 

and/or disappear). Photon interactions are very important when considering how a photon beam interacts 

with a patient. 

 

 Incoherent Scattering, also known as Compton Scattering or Compton Effect 

 Photoelectric Effect           * Coherent Scattering,  

 Pair Production                  *Triplet Production 

 Photodisintegration 
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a. Incoherent Scattering (Compton Effect) - σinc 

Incoherent scattering is the most important interaction in radiotherapy. It occurs when a photon has a much 

greater amount of energy than the binding energy of the electron, effectively considering the electron as 

'free'. In this interaction, the photon interacts with the 'free' electron, giving up some of its energy and 

undergoing scattering. The electron receives the energy and is set in motion in a different direction. 

b. Photoelectric Effect – τ :  

The photoelectric effect occurs when a photon interacts with an orbital electron whose binding energy is 

close to that of the photon energy. In this scenario, the photon disappears and all of its energy is given to 

the orbital electron, which is then ejected from the atom with kinetic energy. 

c. Coherent Scattering - σcoh  

 Coherent scattering occurs at low photon energy radiation. A photon may interact with an orbital electron 

and is then deflected (or scattered) at a small angle. It occurs when the energy of X-ray or gamma photon 

is small in relation to the ionization energy of the atom. Hence no emission of electrons 

d. Pair Production – κ  

 Pair production is the creation of an elementary particle and its  antiparticle i.e. a pair of particles whose 

charges are opposite, for example an electron  and positron , a muon and antimuon, or a proton 

and antiproton. Example .  

It occurs when a photon passes very close to the nucleus of an atom. The photon interacts with the strong 

nuclear field of the atom, in such a way the photon transforms itself into an elementary particle-antiparticle 

pair. If the energy of the photon is high enough, the photon may disappear and 'create' an electron and a 

positron  

 

 

e. Triplet Production - κtr 

 

It is possible for pair production to occur in proximity to an electron; this is called triplet production. Triplet 

production is a special case of pair production which occurs in the vicinity of an orbital electron. The photon 

disappears and the energy is used to create an electron and positron.  

f. Photodisintegration - π 

Photodisintegration is an uncommon event that occurs when a photon (high energy gamma ray) is absorbed 

by the nucleus of an atomic nucleus and causes it to enter an excited state which immediately decays by 

emitting subatomic particles such as a proton, neutron, or alpha particle.  

1.8. Dual nature of radiation and matter (Wave particle duality of light and matter). 
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Wave particle duality is the concept that every elementary particle may be partly described in terms not 

only of particles but also of waves. It expresses the inability of the classical concepts “particle” or “wave” 

to fully describe the behavior of quantum-scale objects. A given kind of quantum object will exhibit 

sometimes wave, sometimes particle character; in respectively different physical settings.  

Wave theory of electromagnetic radiations explained the phenomenon of interference, diffraction and 

polarization. On the other hand, quantum theory of electromagnetic radiations successfully explained the 

Photoelectric Effect, Compton Effect, Black Body Radiations, X- ray Spectra, etc.  

 

Note: In now experiment, matter exists both as a particle and as a wave simultaneously. 

. 

Wave-like Behavior of Light 

Diffraction, interference and polarization are explained by the wave-like behavior of light. 

The frequency of light is related to its wavelength according to the equation . where 

is Planck’s constant.  

Particle-like behavior of light. 

Compton’s effect and photoelectric effect support the particle-like behavior of light where it interacts with 

matter. Isaac Newton developed the corpuscular hypothesis when explaining rectilinear propagation of 

light. 

The properties of light as wave-particle are summarized in the following diagram:  

 

                              
 

1.9. The principle of complementarities  

The principle of complementarity refers to the effects such as wave particle duality in which different 

measurements made on the system reveal it to be complementary to each other; but at the same time, they 

also exclude each other. 

Niels Bohr saw the duality as one aspect of the concept of complementarity.  

 

Examples of complementarity properties:  

 Position and momentum,       *Energy and duration,  

 Spin on different axes,           *Wave and particle,  

 Value of a field and its change (at certain position),  

 Entanglement and coherence.  
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De Broglie wave 

According to de Broglie, a moving material particle can be associated with a wave. i.e. a wave can guide 

the motion of the particle. The waves associated with the moving material particles are known as de Broglie 

waves or matter waves. 

 

Expression for de Broglie wave 

According to quantum theory, the energy of the photon is  

According to Einstein’s theory, the energy of the photon is  

So, or   where is momentum of a photon 

If instead of a photon, we have a material particle of mass  moving with velocity , then the equation 

becomes  which is the expression for de Broglie wavelength.  

Different forms of de Broglie wavelength:  

i) Relating wavelength and momentum  

ii) Relating wavelength and kinetic energy, since for non-relativistic case.  

iii) The kinetic energy of a charged particle carrying charges is given by where is the 

accelerating potential then,  

1.10. Electron microscope  

A microscope can be defined as an instrument that uses one or several lenses to form an enlarged 

(magnified) image. Microscopes can be classified according to the type of electromagnetic wave employed 

and whether this wave is transmitted or not through the specimen.  

An electron microscope is a type of microscope that uses electrons to illuminate a specimen and create an 

enlarged image. It is an impressively powerful microscope that exists today, allowing researchers to view 

a specimen at nanometre size. Electron microscopes have much greater resolving power than light 

microscopes and can obtain much higher magnifications.  

The electron microscope uses electrostatic lenses in forming the image by controlling the electron beam to 

focus it at a specific plane relative to the specimen in a manner similar to how a light microscope uses glass 

lenses to focus light on or through a specimen to form an image. 

The most common electron microscopes are Transmission Electron Microscope (TEM) and Scanning 

Electron Microscope (SEM). 
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Fig. Electron microscope  

 

      

Types of Electron microscopes  

Transmission Electron Microscope (TEM) 

 TEM consists of a cylindrical tube about 2 meters long. The tube contains vacuum where the specimen is 

located. This is because the molecules of gases, such as those in air absorb electrons. TEM works by 

emitting electrons from a cathode, then accelerating them through an anode, after which the electrons pass 

through an aperture into the vacuum tube. 



The image can be photographically recorded by exposing a photographic film or plate directly to the 

electron beam, or a high-resolution phosphor may be coupled by means of a fiber optic light-guide to sensor 

of a CCD (charged coupled device) camera. The image detected by the CCD may be displayed on a monitor 

or computer. 

  TEM applications  

 TEMs provide topographical, morphological, compositional and crystalline information. 

 It is useful in the study of crystals and metals, but also has industrial applications. 

 TEMs can be used in semiconductor analysis and the manufacturing of computer and silicon chips. 

 Tech giants use TEMs to identify flaws, fractures and damage to micro-sized objects; this data can 

help and fix problems and/or help to make a more durable efficient product. 

 Colleges and universities can utilize TEMs for research and studies. 

 

Scanning Electron Microscope (SEM) 

The SEM is designed for direct study of the surfaces of solid objects. By scanning with an electron beam 

that has been generated and focused by the operation of the microscope, an image is formed in the same 

way as a TV. 

Unlike the TEM, where electrons of the high voltage beam from the image of the specimen, the Scanning 

Electron Microscope (SEM) produces images by detecting low energy secondary electrons which are 

emitted from the surface of the specimen due to excitation by the primary electron beam. 

Applications of SEM  

 Image morphology of samples  

 Image composition and finding some bonding differences (through contrast and using 

backscattered electrons) 

 Image molecular probes: metals and fluorescent probes. 

 Wet and dry samples while viewing them . 

 View frozen material (in an SEM with a cryostage) 

Electron microscopy application areas 

 

1. Semiconductor and data storage ,   Biology and life sciences   

2. Research , Industry 

End of unit one Exercises  

Show that the photons in a 1240nm infrared light beam have energies of 1.00eV. 

1. A metal of work function 2.50eV is irradiated with light of an unknown frequency. The maximum 

velocity of the photo electrons is 1.14x106ms-1                                                                       a) Calculate 

the maximum wavelength of the incident radiation.                                                            b) Explain what 

do you understood by Work function. 

c) Compute the energy of a photon of blue light of wavelength 450nm. 

2. To break a chemical bond in the molecules of human skin and thus cause sunburn, photon energy of about 

is required. To what wavelength does this correspond? 

3. The photoelectric threshold wave length of silver is 2762 AO, when the silver surface is illuminated with 

ultraviolet light of wave length 2000Ao calculate: 

3.50eV



a) The maximum kinetic energy of the ejected electron in Electron-volts (eV)            

b) The maximum velocity of the electrons   

c)  The stopping potential (Vo) in Volts for the electrons                                             

4. The work function of sodium metal is . What is the longest-wavelength light that can cause 

photoelectron emission from sodium? 

 

5. What potential difference must be applied to stop the fastest photoelectrons emitted by a nickel surface 

under the action of ultraviolet light of wavelength 200nm? The work function of the nickel is  

 

UNIT II: SIMPLE HARMONIC MOTION 

Introduction  

A motion which repeats itself in equal fixed time intervals is periodic motion. Examples are planet in its 

orbit, water wave, pendulum, oscillating spring, and molecular vibrations.  

 

A simple harmonic motion (S.H.M) is defined as follows: Simple harmonic motion is a periodic motion 

whose the acceleration (or force) is directly proportional to its displacement from a fixed point and is always 

directed towards that point. Mathematically (the negative sign is due to the fact that and are 

in opposite directions). 

2. Kinematics and simple harmonic motion 

Simple harmonic motion is a type of motion where the restoring force 𝐹 is directly proportional to the 

displacement𝑥 and acts in the direction opposite to that of displacement.  

 That is  ;  but the force is given by thus ; this is called the force 

law of simple harmonic motion. 

 ; . The negative sign signifies that the force and acceleration are always pointing 

back towards the mean position respectively. The values and are constants.  

Taking the SHM as a circular periodic motion ; then ; so , this 

means that the acceleration is directly proportional to the displacement from a fixed point and it is always 

directed towards this point . 

1.1. Definition of terms 

Time period or periodic time : it is the time taken for the particle to complete one oscillation, that is, 

the time taken for the particle to move from its starting position and return to its original position Frequency 

means how many oscillations occur in one second. the frequency is expressed by; Amplitude 

is the maximum displacement of the particle from its resting position or mean position. 
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From the graph, the displacement can be represented as . 

Angular velocity : angular velocity is the rate of change of angular displacement. It is measured in

. This is related to periodic time according to equation . 

Linear velocity is the rate of change of linear displacement. It is measured in ; . 

Linear acceleration of a particle is the rate of change of linear velocity of that particle with time. It is 

measured in ;   

 

3. Equation of SHM 

The equation of simple harmonic motion is derived based on the conditions necessary for periodic motion 

to be simple harmonic. 

 

a) Displacement  

If the circular motion is converted into SHM, we have: 

 

  
 

 (Along the vertical axis i.e. vertical oscillations).   

 (Along the horizontal axis i.e. horizontal oscillations). 

A graph of variation of the displacement of with time on the horizontal axis i.e. its time trace like those 

for velocity and acceleration is sinusoidal.  
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b) VelocityThe velocity of is the component of ’s velocity parallel to i.e. 

or . 

The variation of the velocity of with displacement is given by since 

from  

As , :      

                         

                         

                                       

The velocity of is maximum when i.e. , and it is zero when . 

Note that when the velocity is zero, the acceleration is maximum and vice versa. We say that there is a 

phase difference of a quarter of a period  between the velocity and the acceleration. The phase 

difference between the displacement and the acceleration is a half of a period . 

c) Acceleration  

The acceleration is the rate of change of velocity  i.e. where

.  

The variation of acceleration with the displacement  

 

                             

                       

 
 

d) Expression for angular velocity  and the period 
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For a particular SHM, the angular speed is constant and so the period is constant and independent of 

the amplitude of the oscillation. If the amplitude increases, the body travels faster and so the period 

remains unchanged. 

Consider the equation for simple harmonic motion , we can ignore the sign and obtain 

and then  . Multiplying both numerator and denominator by the mass , we get

. The ratio is the force per unit displacement i.e. the force causing the displacement  , so 

and  or  𝜔 = √
𝑓𝑜𝑟𝑐𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚
. The force per unit displacement is also called the 

spring constant and it is denoted by then i.e.   The period of the SHM is the time 

required to complete one revolution (turn, cycle, 4 quadrants, angular displacement of ) 

that is .  

It is clear that the period increases with the increase of mass of the oscillating system and/or the decrease 

of the force per unit displacement (spring constant). 

An expression for the angular speed can also be deduced as follow for a system spring-mass:  

The force . This force is balanced by the restoring force . Equating the two 

equations we get:  . Making the subject of the equation, we get . 

The frequency is the number of complete cycles per unit time  i.e. . 

By equating both expressions for the acceleration and gives  
 

i.e. 

; this is an differential equation of simple harmonic motion. Its solution is 

where is the displacement and is the amplitude. 

4. Simple harmonic oscillators  

A simple harmonic oscillator is a physical system in which a particle oscillates above and below a mean 

position at one or more characteristic frequencies. 

Mass on a spring (elastic pendulum) 
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a) Period of oscillations 

The extension of a spiral spring which obeys Hooke’s law is directly proportional to the extending tension. 

A mass  attached to the end of a spring exerts a downwards tension on it and if it stretches it by an 

amount , then if is the spring constant, the stretching tension is therefore . 

Horizontal oscillations:  

     

Vertical oscillations :                 

 

 

                                                                          

                                            Equilibrium position                               

                     

                                

  
                                 

                                   
If the mass is pulled down a further distance below its equilibrium position, the stretching tension acting 

downwards is which is also the tension in the spring acting upwards. Hence the resultant restoring 

upwards force on the mass is  

                                                                                                  

                                                                                                 

                                                                                                . 

When the mass is released, it oscillates up and down. If it has an acceleration at extension then by 

Newton’s second law,  

                                                     so  

The period  i.e. or 
g

e
T 2 where e is the extension.It follows that

. If the mass is varied and the corresponding periods found, a graph of against , 

is a straight line but it does not pass through the origin as we might expect from the above equation. This 

is because of the mass of the spring itself being neglected in the above derivation. Its effective mass and a 

value of can be found experimentally. 
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Measurement of and effective mass of spring.      Let be the effective mass of the spring; then 

but and  

Substituting for in the first equation and squaring, we get  

                                                                       

                                                                      

                                                                     and  

                                                                                              

 and then  

 and  

By measuring i) the static extension  and  

                       ii) The corresponding period using several different masses in turn, a graph of against 

can be drawn. It is a straight line of slope and intercept on the axis .  

This enables  and to be found. Theory suggests that the effective mass of a spring is about one third 

of its actual mass.                  

 Graph  

                                                                              

                                                                            

 

                                              

                                                                                  

Intercept                                                                   The slope i.e.  

                                                                                               The gravity . 
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The effective mass of the spring is  that is where is the magnitude of -

intercept. 

 

3.1. Simple pendulum  

 

a) Period of oscillation  

A simple pendulum consists of a small bob (in theory a particle) of mass suspended by a light 

inextensible thread of length from a fixed point. If the bob is drawn aside slightly and released, it oscillates 

to and fro in a vertical plane along the arc of a circle. It describes a simple harmonic motion about its 

equilibrium position. 

                                 

                                   

                                          

                                        

                                            

                                   

                                              

Resolving radially and tangentially at , we see that the tangential component is the 

unbalanced restoring force acting towards . If is the acceleration of the bob along the arc at due to 

then the equation of motion of the bob is . 

When is small, in radians and ; . 

                          

                                           

                                            (where ) 

The motion of the bob is SHM if the oscillations are of small amplitudes i.e. . The period is 

given by , therefore . 

The period is independent of the amplitude and the mass, and at a given place on the Earth’s surface 

where is constant, it depends only on the length of the pendulum. 

 

b) Measurement of by a method of simple pendulum 

 

A fairly accurate determination of  can be made by measuring the periods  for different values of  

plotting a graph of  against . 
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A straight line  is then drawn so that the points are evenly distributed about it. It should pass through 

the origin and its slope  gives an average value of  from which  can be calculated. Since

,   

    then .                                               

                                                                                                                                  

 

 

                                                                                                                                 

                                                                                                                                        

       

3.3. Liquid in a U-tube 

  

Consider a U-tube filled with a liquid. If the liquid on one side of a U-tube is depressed by blowing gently 

down that side, the level of the liquid will oscillate for a short time about the respective positions and 

before finally coming to rest.  

 

                

    

                                                                   

                                    

                         

                                                                            

 

 

 

After displacing liquid                Before displacing liquid 

 

As shown in figure, is  units below the original level , and is units above the original level . 

Here is displacement of the fluid caused by blowing into one arm of the U-tube. 

Usually, pressure in liquid is given by 𝑃 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 × ℎ𝑒𝑖𝑔ℎ𝑡 

 

Excess pressure exerted in the liquid will store some energy to restore the position of the liquid and is given 

by: 𝑃 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 × 𝑒𝑥𝑐𝑒𝑠𝑠 ℎ𝑒𝑖𝑔ℎ𝑡 

 

Also the pressure and   

The force on the liquid  
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From Newton’s second law of motion, the resultant force on the liquid is given by  where is 

the mass of the oscillating liquid.  

As𝑀𝑎𝑠𝑠 = 𝑉𝑜𝑙𝑢𝑚𝑒 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; and𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐴𝑟𝑒𝑎 × 𝐿𝑒𝑛𝑔ℎ𝑡; we get and with

. 

The mass and  

and are equal and opposite to each other;  

 

where and are constant.  

Comparing expressions and , we get  

𝑇 = 2𝜋√
ℎ

𝑔
;     This is an expression for the period of a SHM of the liquid in a U-tube 

                                                                        

4. Energy of SHM 

 

There is a constant interchange of energy between the kinetic and potential forms, and if the system does 

not work against resistive forces (is undamped) its total energy is constant. 

 

a) Kinetic energy    

The velocity of a particle   of mass   at a distance   from its centre of oscillation is 

. Kinetic energy at displacement  is   

                                                   

                                                                 

                                                             

b) Potential energy       

 

As   moves out from  towards  (or ) work is done against the force trying to restore it to . So 

 loses kinetic energy and gains potential energy. When , the restoring force is zero; at 

displacement  , the force is  (since the acceleration has magnitude ). Therefore average force 

on while moving to displacement  , is  .   

The work done= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑜𝑟𝑐𝑒 × 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑜𝑟𝑐𝑒. 

 . The potential energy at displacement   is  

 

c) Total energy of a SHM 
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At displacement  we have, total energy   

Total energy  thus . 

This is constant, it does not depend on the displacement and it is directly proportional to the product of 

i) the mass  

                  ii) The square of the frequency  

                  iii) The square of the amplitude.   

 

Variation of kinetic energy, potential energy and total energy with displacement 

 

                                            Energy  

                                                                                Total energy  

                                                                                          Potential energy  

 

                                                                                        Kinetic energy  

                                                                                           

                                                                                          Displacement  

In simple pendulum, all the energy is kinetic as the bob passes through the center of oscillation and at the 

top of the swing it is all potential. 

d) Variation of kinetic energy and potential energy with time  

These energies vary with time as shown by the graphs. 

The kinetic energy ;         (since ) 

The potential energy ;    ( ) 

 

         Energy  

                                                                   Total energy  

                                                                    Potential energy  

 

                                                              Kinetic energy  

                                                                                    Time  

                                                            

5.  Superposition of harmonic motions with the same frequency 

Superposition of simple harmonic motions consists of the propagation of two (or more) SHM travelling 

through the same medium at the same time. The principle of superposition states that “when two or more 

simple harmonic motions travelling in a medium superpose upon each other, then the resultant 

displacement at any instant is equal to the vector sum of the displacement due to individual simple 

harmonic motion”. 

The resultant of the superposition of simple harmonic motions is the linear combination of individual simple 

harmonic motions. 
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Consider two special cases:  

1. If we say that the two motions are in phase. Then the resultant motion is

. The equation shows that the resultant motion is also SHM with the same angular frequency. The 

motion has amplitude equal to the sum of the amplitudes of the two motions; that is .  

2. When , we have i.e. .  The resultant motion is 

 i.e. which shows that the resultant motion is SHM 

with the same angular frequency and amplitude equals to the difference of the amplitudes of the two 

motions; that is for that reason we say that the motions are in opposition.   

In general case, where the phase difference is arbitrary; the resultant motion is also SHM with the same 

angular frequency  and amplitude given . It can be seen and form a 

fixed angle . 

 

Superposition methods  

 

 Fresnel vectors method 

This method is used for the superposition of any two motions of the same frequency.    

    

                                                       

 

                        

                                              

                                       

                                                                                   

This method uses vectors addition where the resultant amplitude is given by cosine rule and the phase 

difference from the arctangent.  

i.e. and  

i.e.  

The resultant amplitude is  
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The phase difference of the resultant motion is  

The resultant motion is .
 

 Simpson method 

 

It is applicable for two motions of the same amplitude and same frequencies but with a phase difference.  

             

         

Theoretical examples: 

 

and  

 

 

. The resultant amplitude is  

The phase difference of the resultant motion is . 

For the motions expressed in cosine function,   and  

. The resultant amplitude is  

The phase difference of the resultant motion is 
 

Applications of superposition principle 

 

Superposition principle can be applied to simple harmonic motions and waves in the following 

phenomenon: 

1. Diffraction of secondary wavelets originating from coherent sources on the same wavefront 

2. Stationary waves result from the superposition of two waves of the same amplitude and frequency 

travelling at the same speed in opposite directions. 

3. Interference results from the superposition of coherent waves from identical sources traveling in the 

same medium. 

4. Beats: two wavestrains of close frequency travelling in the same direction at the same speed. 
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End unit two exercises  
 

1. Define  the following terms: 

a) amplitude      b) equilibrium position    c) frequency   d)    Hooke’s law   e)  ideal spring 

f) mechanical resonance   g) period   h) periodic motion   i) restoring force   

j) simple harmonic motion 

 

2. A mass of 0.5 kg oscillates on the end of a spring on a horizontal surface with negligible friction 

according to the equation . The graph of F vs. x for this motion is shown below. 

 

 

The last data point corresponds to the maximum displacement of the mass.  

Determine the:  

(a) angular frequency ω of the oscillation,  (b) frequency f of oscillation, 

(c) amplitude of oscillation,   (d) displacement from equilibrium position (x = 0) at a time of 2 s. 

3. A pendulum of mass 0.4 kg and length 0.6 m is pulled back and released from and angle of 10˚ 

to the vertical.  

(a) What is the potential energy of the mass at the instant it is released. Choose potential energy to 

be zero at the bottom of the swing.  

(b) What is the speed of the mass as it passes its lowest point? 

This same pendulum is taken to another planet where its period is 1.0 second.  

(c) What is the acceleration due to gravity on this planet 
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UNIT III: FORCED OSCILLATIONS AND RESONANCE 

1. Damped oscillations 

 

We know that in reality, a spring won’t oscillate forever. Frictional forces will diminish the amplitude of 

oscillation until eventually the system is at rest. If we consider a pendulum oscillating in air, its amplitude 

decreases gradually to zero due to the resistive force arising from air; the motion is said to be damped by 

air resistance. Its energy becomes internal energy of the surrounding air.  

Damping is the gradual decrease of amplitude of an oscillating system due to friction force (air resistance) 

and losses of energy. As work is being done against the dissipating force, energy is lost. Since energy is 

proportional to the amplitude, the amplitude decreases exponentially with time. 

a. General characteristics of damped oscillations 

1. Non conservative forces may be present: Friction is common non conservative force  

                                                                        No longer an ideal system 

2. The mechanical energy of the system diminishes in time, motion is said to be damped 

3. The motion of a system can be decaying oscillations if damping is weak. 

4. If damping is strong, motion may die away without oscillating 

5. Still no driving force, once system has been started. 

6. The amplitude decays at exponential rate so that .  

b. Types of damped oscillations 

 Underdamped (lightly damped) oscillations 

 Overdamped (heavily damped) oscillations 

 Critically damped oscillations. 

 

For underdamped oscillations (slightly damped oscillations), the system oscillates and the amplitude 

decays exponentially. The examples are acoustics:  

 A percussion musical instrument (e.g. a drum) gives out a note whose intensity decreases 

with time. (Slightly damped oscillations due to air resistance). 

 The paper cone of a loudspeaker vibrates, but is heavily damped so as to lose energy (sound 

energy) to the surrounding air. 

 

When a system is heavily damped no oscillations occur and the system returns very slowly to its 

equilibrium position. When the time taken for the displacement to become zero is a minimum  

The system is said to be critically damped, (with the period of free oscillations). 

Examples of critical damping are:  

Shock absorber: it critically damps the suspension of the vehicle and so resists the setting up of vibrations 

which could make control difficult or cause damage. The viscous force exerted by the liquid contributes to 

this resistive force. 

Electrical meters: they are critically damped ( i.e. dead-beat) oscillators so that the pointer moves quickly 

to the correct position without oscillation. 
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c. Equation for damped oscillations  

In terms of the derivatives, the equation is  

where  is the mass, is the constant which depends on the kind of liquid (fluid) and the shape of the 

mass. 

 The simplified equation is 

; where𝑎 is the acceleration, 𝑣 is the velocity and 𝑘 is the spring force. 

 

The frictional force (damping force, viscous drag is proportional to the velocity) is .  

The restoring force is . 

The net force  and Newton’s second law of motion is written as follow: 
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The oscillation has exponential decay terms which depend upon a damping coefficient. As , 

then the damping coefficient c is given by .The parameter depends on the damping coefficient

. 

By differentiating , given that , the equation becomes:

.  As and  ; then  we get

. 

By simplifying the equation is ; and by solving this quadratic equation we get

. 

 

 

The general solutions for the equations of damped oscillations 

 

 Concerning the decay of amplitudeat exponential rate, 

If , then .  i.e. , , this is the 

half-life: time required for the initial amplitude of oscillations to decay to its half (to be reduced to its half) 

i.e. . 

 If ( ,  is negative): (underdamped) light damped oscillations. 

The restoring force is large compared to the damping force; the system oscillates with decaying amplitude.  

The general solution of the equation is i.e.  

The parameter depends on the damping coefficient , and it is given by . 

The damping coefficient is small relative to and i.e . 

The parameter is the new oscillation frequency such that .  

The new angular frequency is slightly less than the initial angular frequency .  

The decay time . 

The amplitude decays in time as , and energy is proportional to decays as . 

 If ( ,  is positive): overdamped (heavy  damped) oscillations 
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The damping coefficient is large relative to and i.e.  

The damping force is much stronger than the restoring force 

The amplitude dies away as a modified exponential.  

The equation is: ( is always less than i.e. ) or where 

 

 If  ( , ): critical damped oscillations.  

It is the transition from over-damping to under-damping and vice-versa.  

There is a large value of . 

The damping coefficientis . 

The restoring force and damping force are comparable in effect. 

The system cannot oscillate; the amplitude dies away exponentially. 

or . 

 About the decay of energy of the damped system, 

For small damping constant the mechanical energy of the oscillator is given by i.e. 

. 

 

2. Natural frequency of vibration and forced oscillation 

A forced oscillator is one for which a force continually or repeatedly applied to keep the oscillation 

going. E.g. a swing pushed each time it reaches a certain point, behaves as a forced oscillator and 

will continue to swing for as long as energy is supplied. Forced vibration is a vibration in which 

a system is involuntary compelled to vibrate. 

The situation can be illustrated as follows on the arrangement known as Barton’s pendulum. 

                                                     String       

 

                                                 Driver pendulum  

Paper cone                               heavy bob  

pendulum 

 

Plastic curtain ring 

 

The pendulum whose length equals that of the driver has the greatest amplitude, its natural frequency of 

oscillation is the same as the frequency of the driving pendulum.  This is an example of resonance and the 

driving oscillator then transfers its energy most easily to the other system i.e. the paper cone pendulum of 

the same length. The natural frequency that the swing wants to oscillate at is resonant frequency.  
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We define the natural frequency as the frequency at which a system vibrates when set in free vibration 

while the forcing frequency is the frequency of an external periodic force applied to a system and forced 

frequency is the frequency of vibration of the system which has been forced to vibrate.   

 

a. Characteristics of forced oscillations  

 

*An external driving force starts oscillations in a stationary system  

*The amplitude remains constant (or grows) if the energy input per cycle exactly equals (or exceeds) the 

energy loss from damping  

Eventually,  and a steady-state condition is reached  

*Oscillations then continue with constant amplitude 

*Oscillations are at the driving frequency . 

*The oscillating driving force applied to a damped oscillator is  

The net force is  

The solution of the equation of motion is  

where or   or again 

    where is the natural angular frequency and 

is the driving angular frequency of external force.  

The amplitude depends on how close is to natural frequency . 

 
 

 

b. Variation of amplitude on graph at forcing frequency close to natural frequency of vibration 

The equation is or . 
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The amplitude of vibration is strongly dependent on the frequency of excitation, and on the properties of 

the spring-mass system. If the forcing frequency is close to the natural frequency of the system, and the 

system is lightly damped, huge vibration amplitudes may occur. On the graph the situation is illustrated as 

follow:  

 

 

 

 

 

 

 

 

 

 

c. Resonance  

 

By definition, resonance is the increase in amplitude of oscillation of an electric or mechanical system 

exposed to a periodic force where frequency is equal to the natural frequency of the mechanical or 

electrical system. 

 

In physics, resonance describes a vibrating system or external force which drives (forces) another system 

to oscillate with greater amplitude at a specific preferential frequency. Increase of amplitude as damping 

decreases and frequency approaches resonant frequency of a driven damped simple harmonic oscillator. 

Frequencies at which the response amplitude is a relative maximum are known as the system’s resonant 

frequencies or resonance frequencies. At resonant frequencies, small periodic driving forces have the 

ability to produce large amplitude oscillations. This is because the system stores vibrational energy.  

Resonance occurs when a system is able to store and easily transfer energy between two or more different 

storage modes (such as kinetic energy and potential energy in the case of a pendulum). However, there are 

some losses from cycle to cycle, called damping. When damping is small, the resonant frequency is 

approximately equal to the natural frequency of the system, which is a frequency of unforced vibrations.  

 

Applications and examples (types) of resonance in everyday life 

 Resonance occurs with all types of vibrations or waves. There are: 

 

A washing machine  

A washing machine may vibrate quite violently at particular speeds.  

Breaking the glass using voice 

You have heard the story of an opera singer who could shatter a glass by singing a note at its natural 

frequency. The singer sends out a signal of varying frequencies and amplitudes that makes the glass vibrate. 

At a certain frequency, the amplitude of these vibrations becomes maximum and the glass fails to support 

it and breaks it.  
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Breaking the bridge 

The wind, blowing in gusts, once caused a suspension bridge to sway with increasing amplitude until it 

reached a point where the structure was over-stressed and the bridge collapsed.  

Tuning circuit 

The other example of useful resonance is the tuning circuit on a radio set. Radio waves of all frequencies 

strike the aerial and only the one which is required must be picked out.  

Microwave Ovens 

Microwave ovens use resonance. The frequency of microwaves almost equals the natural frequency of 

vibration of a water molecule. This makes the water molecules in food to resonate. This means they take in 

energy from the microwaves and so they get hotter. This heat conducts and cooks the food. 

 

Magnetic resonance imaging (MRI)  

The picture showing the insides of the body was produced using magnetic resonance imaging.  

Mechanical resonance: is the tendency of a mechanical system to absorb more energy when the frequency 

of its oscillations matches the system’s natural frequency of vibration than it does at other frequencies. It 

may cause violent swaying motions and even catastrophic failure in improperly constructed structures 

including bridges, buildings, trains and aircrafts.  

 

Acoustic resonance: is related to sound waves when producing beats, musical intervals, and concert hall 

acoustics, distinctions between noise and music, and sound production by musical instruments.  

 

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedance of 

the circuit is at a minimum in a series circuit or at maximum in a parallel circuit (or when the transfer 

function is at a maximum) example: tuned circuits in radios and T.V. that allow radio frequencies to be 

selectively received. 

Optical resonance: an optical cavity or optical resonator is an arrangement of mirrors that forms a standing 

wave cavity resonator for light waves.  

Example:  the creation of coherent light in a laser cavity. 

 

Orbital resonance: it occurs when two orbiting bodies exert a regular, periodic gravitational influence on 

each other, usually due to their orbital periods being related by a ratio of two small integers.  

 

Electromagnetic resonance: is a phenomenon produced by simultaneously applying steady magnetic field 

and electromagnetic radiation (usually radio waves) to a sample of electrons and then adjusting both the 

strength of magnetic field and the frequency of the radiation to produce absorption of the radiation.  

 

Nuclear, atomic, particle, molecular resonance: nuclear magnetic resonance (NMR) is the name given to 

a physical resonance phenomenon involving the observation of specific quantum mechanical magnetic 

properties of an atomic nucleus in the presence of an applied external magnetic field 

Resonance of quantum wave functions: the wave function describes the position and state of the electron 

and its square gives the probability density of electrons. 

 

Tidal resonance: it occurs when the tide excites one of the resonant modes of the ocean. The effect is most 

striking when a continental shelf is about a quarter wavelength wide. Then an incident tidal wave can be 



reinforced by reflections between the coast and the shelf edge, the result producing a much higher tidal 

range at the coast.   

d. Bandwidth and quality factor of a resonance curve 

A resonance curve: is a graph which represents the variation of energy or displacement with frequency of 

forced oscillations.  

A quality factor is a dimensionless parameter that describes how under-damped an oscillator or 

resonator is, or equivalently, characterizes a resonator’s bandwidth relative to its center frequency. A 

high quality factor indicates a lower rate of energy loss relative to the stored energy of the oscillator, i.e. 

the oscillations die out more slowly. A pendulum suspended from a high quality bearing, oscillating in air, 

has a high quality factor while a pendulum immersed in oil has a low quality factor. or

.    The bandwidth is the width of the range of frequencies for which the energy is at least 

half its peak value or the displacement is a least (  or ) of its amplitude. The energy 

of oscillation, or the power dissipation, decays twice as fast, that is, as the square of the amplitude.  

 

Figure: Resonance curve                              Then, and or . 

e. Advantages of resonance 

1. Hearing occurs when the ear drum (tympanic membrane) resonates to sound waves hitting it. 

Microphones and diaphragm in the telephone work in much the same way. Speakers in hifis, T.Vs etc 

use resonance as well. 

2. Resonance is used in guitars and pianos as well as wood wind instruments to produce sound. 

3. Resonance is also used to shatter gallstones in patients using ultrasound. 

4. Magnetic resonance imaging (MRI) scans are used every day in hospitals for diagnostic purposes and 

also for industrial purposes. 
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f. Disadvantages of resonance 

1. Negative effect of resonance could be the effect of waves hitting a rock face. The vibration of kinetic 

energy from the wave resonates through the rock face causing cracks and eventually great slabs of the 

cliff fall into the sea. 

2. In a car crash, a passenger may be injured because his chest is thrown hard against the seat belt; the 

vibration can burst blood vessels. 

3. If one is shot with a bullet, the resonance of the bullet hitting the body can cause liquefaction of the 

internal organs; this can also occur if you are near a loud explosion. Vibration of the explosion may 

apparently burst blood vessels and liquefy some of the organs. 

4. Resonance can set a bridge swinging and destroy it. for that reason, anybody example the army men 

always break step and do not match over a bridge so that they do not risk hitting its resonance 

frequency.In 1940, Tacoma Narrows Suspension Bridge (Galloping Gertie) collapsed just a few months 

after its opening. 

5. Shattering glass when a high pitched sound is played (like a singer’s voice). 

6. earthquakes and damage to buildings  

7. Negative effect of resonance is when bridge builders get it wrong and the wind causes it to resonate at 

its own frequency causing it to tear its self apart.  

Effect of resonance on a system  

 Buildings driven by earthquakes 

 Bridges under wind load 

 All kind of radio devices, microwaves  

 Vibrations at resonance can cause bursting of blood vessel 

 In a car crash a passenger may be injured because their chest is thrown against the seat belt. 

 The vibration of kinetic energy from the wave resonates through the rock face and causes cracks. 

 It is also used in a guitar and other musical instruments to give loud notes. 

 Hearing occurs when eardrum resonates to sound waves hitting it. 

 Soldiers do not march in time across bridges to avoid resonance and large amplitude vibrations. 

Failure to do so caused the loss of over two hundred French infantry men in 1850. 

 An opera singer claims to be able to break a wine glass by loudly singing a note of a particular 

frequency. 

End of unit three exercises 

1) State what is meant by damping. 

2) Describe examples of damped oscillations. 

3) State what is meant by natural frequency of vibration and forced oscillations. 

4)  Describe graphically the variation with forced frequency of the amplitude of vibration of an 

object close to its natural frequency of vibration. 

5) Explain what is meant by resonance. 



6) Describe examples of resonance where the effect is useful and where it should be avoided. 

7) a) Sketch graphs to show light damping, over-damping and critical damping. 

a) Explain why a car shock absorber needs to be a critically damped system rather than an 

over- damped system 

8) Define the following terms: 

i) Simple harmonic motion. 

ii) Damped oscillation. 

iii) Forced oscillation  

9) A block of wood of mass 0.25 kg is attached to one end of a spring of constant stiffness  

100 Nm–1 The block can oscillate horizontally on a frictionless surface, the other end of the 

spring being fixed. 

a) Calculate the maximum elastic potential energy of the system for a horizontal 

oscillation of amplitude 0.20 m. 

b) How does the kinetic energy of the mass relate to the elastic potential energy?  

c) Calculate the maximum speed of the block. 

UNIT IV: PROPAGATION OF MECHANICAL WAVES 

1. Concept of wave 

A wave is a disturbance in the transport of energy from one point to another in a medium or the 

disturbances that propagate energy through a medium without transport of matter.  

The characteristics of waves are the followings:  

 Transport of energy  

 They do this without a net motion of matter  

 They all involve oscillations that are simple harmonic motion. 

2. Types of waves 

 

Waves can be categorized according to: 

 

 The particle motion relative to the direction of energy propagation  

 

i. Longitudinal waves: the orientation of particle motion is parallel to the direction of energy propagation; 

i.e. vibrations are parallel to the wave motion so if the wave is travelling horizontally the particles will 

be compressed closer together horizontally or expanded horizontally as they go along. Example sound 

through air and some earthquake waves. 

ii. Transverse waves: the orientation of particle motion is perpendicular to the direction of energy 

propagation; i.e. Vibrations are perpendicular to the wave motion so if the wave is travelling 

horizontally, the vibrations will be up and down.  Examples: light, a stretched rope or trampoline. 

iii. Surface waves: they travel in circular motion; example is water waves. 



 

 The types of matter they are able to travel through 

i. Electromagnetic waves: they do not need the support to travel; they can travel in vacuum. Examples 

are light, microwaves, radio waves… 

ii. Physical (mechanical) waves: they need a material as support to travel through. Mechanical 

longitudinal waves can pass through liquid; example is water wave sound waves, earthquakes (seismic 

waves) and mechanical transverse waves require a solid to travel through it; example: vibrations in a 

stretched rope.  

iii.  Matter waves:These waves are associated with electrons, protons, and other fundamental particles, and 

even atoms and molecules. Because we commonly think of these particles as constituting matter, such 

waves are called matter waves.However, for specific examples we shall refer to mechanical waves. 

3. Properties of mechanical waves  

The properties of mechanical waves are reflection, refraction, diffraction and interference 

Reflection: when a wave hits a barrier the wave will be bounced back (reflected). If it hits the barrier at an 

angle then the angle of reflection will be equal to the angle of incidence. The example is the echoes which 

are caused by the reflection of sound waves. 

 

               
 

Refraction: when a wave moves from one medium into another, it will either speed up or slow down. For 

example, a wave going along a rope will speed up if the rope becomes thinner. When a wave speeds up, the 

wave fronts spread out, the wavelength gets larger. Note that in both cases, the same number of waves 

will pass you per second, the wavelength may have changed but the frequency has not. 

If a wave enters a new medium at an angle then the wave fronts also change direction. The amount that the 

wave is bent by depends on the change in speed. Water waves are slower in shallower water than in deeper 

water, so water waves will refract when the depth changes i.e. when waves slow down, their wavelength 

gets shorter because the speed is directly proportional to the wavelength, as . 
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Diffraction: wavefronts change shape when they pass the edge of an obstacle or go through a gap. 

Diffraction is strong when the width of the gap is similar in size to the wavelength of the waves.        

 

                                      
 

 

                   For large aperture         For small aperture  

                                    
                                     

There are two types of diffraction: Fresnel’s diffraction and Fraunhofer diffraction. 

In Fresnel’s diffraction, either the source of waves or screen on which diffraction is observed or both are 

at finite distances from the obstacle that cause diffraction. 

In Fraunhofer diffraction, the sources of waves and the screen on which diffraction is observed are 

effectively at infinite distances from the obstacle. This phenomenon is practically complicated but 

theoretically understood. To obtain waves to or from infinite source in laboratory, biconvex lenses are used. 

 

Interference: is a phenomenon in which two waves of the same frequency, same amplitude with a constant 

phase difference superimpose to form a resultant wave of greater or lower amplitude. 

 

 Interference usually refers to the interaction of waves that are correlated or coherent with each other, 

either because they come from the same source or because they have the same or nearly the same frequency. 

 Examples are sounds waves from two distant loudspeakers. The points with maximum vibrations interfere 

to form constructive interference while those of zero amplitude will form destructive interference (silent 

points). 

 



 
*If two waves having the same frequency and amplitude are in phase the resultant wave when they combine 

has the same frequency as the individual waves but twice their amplitude; this resultant is called the 

constructive interference. 

When two waves of the same frequency and amplitude are out of phase (the phase difference is ) the 

result when they combine is complete cancellation called destructive interference. 

                          
 

Polarization: transverse waves can be forced to oscillate in one fixed direction only; this is polarization of 

waves. 

4. Progressive waves 

A progressive wave is a wave which spread out energy from the source vibration into the surrounding space. 

Example is when a ripple is made on the surface of puddle. As the energy spreads out, so its intensity 

decreases.  

A progressive wave is described as follow: 

a. Every particle of medium executes periodic motion  

b. The amplitude of each particle of the medium is same, but there exists phase difference between them 

c. The distance between 2 successive crests of a transverse wave and distance between a compression and 

rarefaction is a wavelength 

d. The changes in pressure and density of the medium are similar in case of progressive waves 

e. In a progressive wave, the particle of the medium wave attain a stationary position 

f. The equation of a progressive wave is  
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Examples of mechanical waves 

Mechanical waves, being progressive and stationary, are seen in different forms as :  

Sound waves are longitudinal waves; they travel fastest in solids, slower in liquids and slowest in gases. 

Water waves are combination of both transverse and longitudinal waves. These waves are periodic 

disturbances that move away from the source and carry energy as they go. 

Ocean waves are longitudinal waves that are observed moving through the bulk of liquids, such as our 

oceans 

Earthquake waves occur when elastic energy is accumulated slowly within the Earth’s crust (as result of 

plate motions) and then released suddenly along fractures in the crust called faults. Earthquake waves are 

also called seismic waves and actually travel as both transverse and longitudinal waves. The P waves 

(Primary waves or compressional waves) in an Earthquake are examples of longitudinal waves.  

Body waves are of two types: compressional or primary waves, which are longitudinal in nature and shear 

or secondary waves, which are transverse in nature. P and S waves are called ‘body waves’ because they 

can travel through the interior of a body, such as Earth’s inner layers, from the focus of an earthquake to 

distant points on the surface. The Earth’s molten core is only travelled by compressional waves. 

Surface waves occur at or near the boundary between two media, a transverse wave and a longitudinal 

wave can combine to form a surface wave. Examples of surface waves are a type of seism wave formed as 

a result of an earthquake and water waves. 

 

5. Different forms of the equation of a progressive wave 

 

; the wave is travelling from left to right (positive direction).  

 

 

  but  

 but or  

 

Or  

If the wave is travelling from the right to left (negative direction) the wave is written as follow: 

i.e.  and vice versa. 

 

6. Superposition of progressive waves  

 

When two identical progressive waves travelling in a medium with same velocity but in opposite directions 

along the same straight line are superposed, then give rise to a system of alternative rarefaction and 

tAy sin

)sin(   tAy

)sin( kxtAy  

)2sin(   ftAy
















x
tAy

2
sin

T




2














 x

T

t
Ay

22
sin

T
v




v
T
















xvt

Ay 2sin

)(
2

sin xvtAy 




)(
2

sin xvtAy 



)sin( kxkvtAy 



compression that cannot move in any direction of medium. This resultant wave is called stationary or 

standing wave.  

They are called stationary because there is no flow of energy along the waves. There are certain points, half 

a wavelength apart, which are permanently at rest, are known as nodes and there are some other points 

midway between the nodes where the displacement is maximum, known as antinodes. 

 

7. Standing (Stationary) waves 

A standing wave is a vibration of a system in which some particular points remain fixed while others 

between them vibrate with the maximum amplitude. The positions of their peaks and troughs do not move. 

Some parts of the string, for example, will vibrate while other parts (e.g. ends) do not. A standing wave 

pattern is a vibrational pattern created within a medium when the vibrational frequency of the source causes 

reflected waves from one end of the medium to interfere with incident waves from the source. 

 Standing waves result in the superposition of two waves of the same amplitude and frequency travelling 

at the same speed in opposite directions. The wave patterns appear to be standing due to the medium 

vibrating at specific frequencies called harmonic frequencies or merely harmonics. The harmonic 

corresponds to the loop and each harmonic equal in length to a half-wavelength . A standing wave is a 

series of nodes and antinodes. 

 

      
 

 

Nodes are points vibrating with an amplitude, which is equal to zero while the Antinodes are the 

points vibrating with a maximum amplitude. 

 

a. Characteristics of Stationary Waves 

 A standing wave is described as follows: 

1. Stationary waves are produced when two identical waves travelling along the same straight    line but 

in opposite direction are superposed. 

2. Crests and troughs do not progress through the medium but simply appear or disappear at the same 

place alternatively.  

3. All the particles, except those at the nodes, follow simple harmonic motion.  

4. The amplitude of the oscillation is zero at nodes and maximum at antinodes.  

5. The distance between two successive antinodes or two nodes is equal to half of wavelength i.e. the 

distance between 3 successive nodes or antinodes is called a wavelength. 

5.  The particle between two successive nodes are in the same phase of vibration while the particles on 

opposite sides of a node are in opposite phase of vibration. 

6. Stationary waves can be produced both by longitudinal waves and transverse waves. 

2





7. All the particles pass through their mean positions or reach their outermost positions simultaneously 

twice in a periodic time.  

8. There is no advancement of the wave and no flow of energy in any direction.  

9. In case of standing wave, pressure and density remains almost unchanged at the nodes, while the 

changes are minimum at the antinodes. 

10. The equation of a stationary wave is  

 

b. Analytical treatment of stationary waves and their properties 

  

Consider two plane progressive waves-one travelling along positive X-axis and another along negative X-

axis with amplitude , wave velocity  and wavelength . So, the superposing progressive waves are 

  and  .  

By the principle of superposition, the resultant displacement of a particle at at time  will be 

                  

                                        (1) 

         Hence   

This equation represents a simple harmonic motion of same wavelength of the   superposed wave but not 

of same amplitude. Moreover, the amplitude is not a constant. For different values of x, 

A will have different values. Equation of motion given by equation (1) is not a progressive motion since its 

phase does not contain any term like or . So, equation (1) represents a stationary wave.   

c. Standing wave equation (free end). 

 

The reflected wave will have the same amplitude, velocity and wave length.  

 (to the right) incident wave.  (to the left) reflected wave. 

Using superposition  

.  
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Position of nodes and antinodes  

For a free end (open end), the oscillation amplitude varies with location according to where

. 

At the nodes: always  i.e. with ( is an odd number). 

                                                                            𝑥 =
𝑛𝜆

4
  

The distance between the nodes is equal to . 

At the antinodes: reaches maximum amplitude . This happens when  i.e. 

with  and 𝑥 =
𝑚𝜆

2
    ( is a natural number).  The distance between the antinodes is   

For two fixed end (closed end), the oscillation amplitude varies with location according to   

since .  

At the nodes:  always.  i.e.  with  and 𝑥 =
𝑛𝜆

2
. 

At the antinodes: , therefore with and   𝑥 =
𝑛𝜆

4
 

The distance between one node and next antinode is . 

d. Standing waves in vibrating strings 

Standing waves are produced on a string when equal waves travel in opposite directions. When the proper 

conditions are met, the interference between the traveling waves causes the string to move up and down in 

segments. This segment vibration gives no appearance of motion along the length of the string. The 

phenomenon is called a standing wave or stationary wave and corresponds to a resonant vibration of the 

string.     The velocity, v, of a wave on a stretched string is given by:  where  is the stretching 

force (tension) and  is the mass per unit length of the string. The same equation can be written as follow 

 where or simply .  If the general wave equation:  is combined with 

the above equation, the frequency of the vibrator is given by the relation:  . TO determine 
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the quantity  and you will be given , so the frequency squared can be obtained from: i.e. 

. 

Experiment to produce standing waves in a vibrating string  

The simplest standing wave pattern that could be produced within a string is one that has points of no 

displacement (nodes) at the two ends of the string and one point of maximum displacement (antinode) in 

the middle i.e. it has one loop. 

 

 This is the first harmonic.                                                           

  As in all standing wave patterns, every node is separated by an antinode by (a quarter of the 

wavelength). This pattern with three nodes and two antinodes (two loops) is referred to as the second 

harmonic; that one with three antinodes (loops) and four nodes is the third harmonic; and they are depicted 

in the figure shown below:    

        
So the following table gives information about the harmonics, number of nodes and antinodes and the length 

of the string; the location of nodes and antinodes when the ends are closed. 

 

Harmonic Number of nodes Number of antinodes Length of the string  

1st 2 1 
 

2nd 3 2  

3rd 4 3 
 

4th 5 4  

5th 6 5 
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Examples of stationary waves in daily life are produced in musical instruments. The examples include 

waves formed on vibrating strings of guitars and violins and also vibrating air column in pipe instruments 

such as organs and flutes. They are also formed in air bottles when air is blown over the open top of the 

bottle. 

Applications of waves  

 

Waves are used: 

 In radar, broadcasting and radio communication 

 In (MRI) magnetic resonance imaging in hospitals 

 In radio communication which forms an integral part of wireless communication 

  In speaking (vocal cords), hearing and in all musical instruments (production of sounds). 

 

                        End unit four exercises 
 

1) The speed of sound in air is a bit over 300 m/s, and the speed of light in air is 

about 300,000,000 m/s.  Suppose we make a sound wave and a light wave that 

both have a wavelength of 3 meters.  

What is the ratio of the frequency of the light wave to that of the sound wave?   

(A) About  1,000,000 

(B) About  0.000,001 

(C) About  1000 

2) Which of the following equation describes a harmonic wave moving in the 

negative x direction  

 (A)  D(x,t) = A sin  (  k x - wt )  

(B)  D(x,t) = A cos (  k x + wt )  

(C)  D(x,t) = A cos (-k x + wt ) 

 

3) f the particles of the medium are vibrating to and fro in the same direction of energy 

transport, then the wave is a ____ wave. 

A. longitudinal b. sound c. standing d. transverse 

4) A transverse wave is traveling through a medium. See diagram below. The 

particles of the medium are vibrating _____. 

5)  



 

a. parallel to the line joining AD. 

b. along the line joining CI. 

c. perpendicular to the line joining AD. 

d. at various angles to the line CI. 

e. along the curve CAEJGBI.     

6) A sound wave has a frequency of 192Hz and travels the length of a football field, 91.4m 

in 0.271s. 

i) What is the speed of the wave? 

ii) What is the wavelength of the wave? 

iii) What is the period of the wave? 

iv) If the frequency was changed to 442Hz, what would be the new wavelength 

and period? 

7) a) Determine the direction of propagation of a plane progressive wave represented by 

the equation  where y is the displacement in millimeters, t 

is in seconds and x is the distance from a fixed origin O in meters                                                                                            

b) Find the frequency of this wave. 
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